Minimally Supervised Prediction of Coarse Semantic Distinctions

C. Aloui*, L. Barque°, A. Nasr*, C. Ramisch*

* LIS, Université Aix Marseille ° LLF, Université Paris 13

Lundi 8 Juillet 2019 JE Demonext "Sémantique pour les ressources en morphologie dérivationnelle"

Method

Data

Experiments

Conclusion and Future work

Minimally supervised method to predict coarse-semantic distinctions

Using seed lists and unannotated corpora

Aims

- Cues for (more fine-grained) semantic classes
- Help for semantic processing (WSD, SRL) and NLP tasks involving semantic treatments (MT, IE)

Justification

 French, like many other languages, lacks semantically labelled corpus data

- We focus on two coarse distinctions in French:
 - COUNTABILITY : Count Ns (two maps, several crimes) vs. Mass Ns (unemployment, some water)
 - ANIMACY : Animate Ns (daughter, committee, troll) vs. Inanimate Ns (tree, weapon, lie)
- Within both distinctions, nominal forms can pertain to both categories
 - produce paper_{Mass} vs. submit two papers_{Count}
 - ► a crane_{Anim} urgent warning **vs.** a crane_{Inanim} operator
- ► Similar distributions (majority class: ~78%)
 - Difference : countability is a semantic and a syntactic phenomenon

Related work

- Minimally supervised classification
- Supersense tagging
- Animacy and countability detection
 - Lexical acquisition
 - Supervised vs. unsupervised methods
 - Countability detection

	Count	Uncount	Avg
Lapata and Keller 2005	88.62	91.53	90.07
Baldwin and Bond 2003	93.90	95.25	94.57

- Representing semantic properties of lexical items as numerical scores denoting coarse distinctions
- Minimally supervised method to predict these scores using seed lists and unannotated corpora
- Evaluation and study of some parameters of our method on (new) datasets annotated for noun animacy and countability in French.

Method

Data

Experiments

Conclusion and Future work

Method

Our method is composed of the following steps :

- 1. Build disjoint lists L_0 and L_1 of **seed words** prototypical of each semantic class 0 and 1
- 2. Locate in a raw corpus C all occurrences of elements of $L_0 \cup L_1$ and annotate them with their class, yielding a **training set** C_A
- 3. Train a classifier P on C_A that takes as input a context c and returns a **contextual score** $0 \le s_{cont}(c) \le 1$
- Extract from C all contexts c₁...c_n of a given target word w and predict scores s_{cont}(c_i) with P. These predicted scores are then aggregated in a lexical score 0 ≤ s_{lex}(w) ≤ 1
- 5. Devise a **strategy** for annotating the target word's occurrence (w, c), based on $s_{lex}(w)$ and on $s_{cont}(c)$ predicted by *P*.

Method: illustration from countability data

1. Seed words (0 for count, 1 for mass)

0 : directive, fusil, pic, modèle. . . **1** : magie, calcium, timidité. . .

2. Training set

0	
de plus amples directives ₀ seront	comme par magie 1 et m'a
elle prévoit un pic 0 d'abandon	cette impression de magie 1 que
viande sur des pics 0 à brochette	un peu de leur timidité 1. Les
La directive ₀ européeenne qui	Oui, le calcium 1 ascorbate peut
blancs, armés de fusils 0	vitamines, $calciums_1$ et sels

3. Learning contextual scores (model 2L0R|f|num)

plus amples directives _{0plur}	comme par magie _{1sing}
prévoit un pic 0sing	impression de magie _{1sing}
sur des pics _{0plur}	de leur timidité _{1sing}
La directive _{0sing}	Oui, le calcium _{1sing}
armés de fusils _{0plur}	vitamines, calciums _{1plur}

Method: illustration from countability data

4. Prediction of contextual scores for unseen nouns

Lui, il continue à te causer derrière la **fumée** de sa cigarette [0.67] mais aussi de sérieux désagréments liés aux **fumées** ! [0.16] t'avales pas la **fumée**, ça fait fondre la glace ! [0.74] Des **fumées** s'élevaient près de la gare de triage de Maaskola. [0.15] On peut citer par exemple le traitement des **fumées** [0.24] Les premières **fumées** quittent les cheminées et montent dans [0.07] l'intérêt majeur du système (reposer son pied) part en **fumée**. [0.81]

- ► S_{lex}(fumée) = 0.32
- 5. Strategy for annotating a target word's occurrence
 - Priority given to the (discriminant) context
 - t'avales pas la fumée_{sing}, ça fait fondre la glace !

 $\rightarrow~$ occurrence of a mass noun

Method

The classifier P

- Multilayer perceptron (MLP)
- Context's word embeddings and simple grammar features
- The lexical score $s_{lex}(w)$
 - \blacktriangleright An occurrence is labeled 1 if its contextual score is >0.5 and labeled 0 if ≤ 0.5
 - We define w's lexical score as the ratio $\frac{n_1}{n_0+n_1}$
 - ▶ Non informative contexts can be ignored by introducing a lexical threshold $0 \le T_{lex} \le 0.5$
 - Ex. if $T_{lex} = 0.35$
 - n1 : occurrences whose contextual score is ≥ 0.85
 - $\blacktriangleright\,$ n0 : occurrences whose contextual score is ≤ 0.15
 - Contexts whose predicted scores fall within the range 0.16 and 0.84 are discarded

Method

Attributing a class to an occurrence of word w in context c:

- Back-off strategy: given an occurrence (w, c), the context c is examined first. If its score s_{cont}(c) is sufficiently informative, then the occurrence is annotated with the class predicted for its context. Otherwise the lexical score s_{lex}(w) is used
- ► A contextual threshold 0 ≤ T_{cont} ≤ 0.5 is introduced in order to decide whether a context is informative or not
- ► If s_{lex}(w) cannot be calculated for w, then the majority class is predicted as a fallback

Method

Data

Experiments

Conclusion and Future work

Data: seed lists

Seeds are selected manually for their univocity (non ambiguous) from a list containing the most frequent nouns in the FrWaC corpus, according to linguistic tests

COUNTABILITY seed lists:

- 196 count Ns, 200 mass Ns
- ▶ Linguistic tests : 1) for count N, 2) for mass N, but not both
 - 1. un/des/trois N ∅
 - 2. un peu de N_{sing} , $V_{trans} du/de la N$

ANIMACY seeds lists:

- > 201 animate Ns, 267 inanimate Ns
- ▶ Linguistic tests : 1) for anim N, 2) for inanim N, but not both
 - 1. det N a décidé de, det N a volontairement V
 - 2. #det N a décidé de, #det N a volontairement V

Data: training corpus

Corpus:

- FrWaC (Baroni et al. 2009)
- Segmented, tokenized, POS-tagged and lemmatized with TreeTagger (Schmid, 1994)

Lemmatized N from seed lists frequence:

- Average number of occurrences: 90,116
- ▶ 12 out of the 845 nouns occur less than 1000 times

Skewed distribution of the target phenomena

- Balanced sample of each class in the training set
- 7,876,629 sentences to learn countability and 21,219,489 sentences to learn animacy

Data: evaluation sets

COUNTABILITY evaluation set

- Manual annotation of 5000 occurrences (50 x 100 N) from the frWaC according to the following strategy:
 - i) if the morphosyntactic context is discriminant for countability \rightarrow contextual annotation
 - ii) if the morphosyntactic context is neutral wrt the mass/count distinction \rightarrow lexical annotation
 - Discarded: 226 undetermined occurrences (e.g. épilepsie, cécité) + 33 ill-formed sentences

 Occurrences 	Count	Mass	Total
	3,813	928	4,741

s	Count	Mass	Both	Total
5	71	2	26	99

Data: evaluation sets

ANIMACY evaluation set

- Available evaluation set for animacy in French
 - Manual annotation of occurrences of nouns and pronouns from the Sequoia Corpus (L. Barque, M. Candito, V. Segonne)
 - ▶ 1,093 different noun lemmas in the set (493 occur only once)

Occurrences	Inanimate	Animate	Total
	2,613	767	3,380

Inanimate	Animate	Both	Total
865	183	45	1,093

Method

Data

Experiments

Conclusion and Future work

Classifiers: simple MLP with two hidden layers containing respectively 300 and 150 neurons

Word Embeddings: 200-dimensional randomly initialized real vectors which are updated through backpropagation

- ReLU activation function
- No dropout
- Keras'categorical cross entropy loss function

Accuracy for countability and animacy on the test sets, with $T_{C}=T_{L}=0.4\,$

	Countability	Animacy
Majority class baseline	80.43	77.31
Best	90.06	92.63
Model	4LOR-LF-num	4L4R-LF-num

Experiments: model features

Influence of the model parameters on the accuracy for COUNTABILITY with $T_C = T_L = 0.4$

	context	word repr.	morpho	accuracy
1	4LOR	LF	num	90.06
2	2LOR	LF	num	89.58
3	3LOR	LF	num	88.58
4	3LOR	LF	none	86.62
5	3LOR	F	num	86.50
6	3LOR	L	num	80.37
7	3L3R	LF	num	79.79

Experiments: model features

Influence of the model parameters on the accuracy for ANIMACY with $T_C = T_L = 0.4$

	context	word repr.	morpho	accuracy
1	4L4R	LF	num	92.63
2	3L3R	LF	num	92.18
3	4L4R	LF	none	92.07
4	4L4R	L	num	90.59
5	4L4R	F	num	90.32
6	2L2R	LF	num	89.14
7	3LOR	LF	num	88.66

Experiments: Seeds lists size and composition

Influence of the seed list size and composition on accuracy for Countability with model 3LOR-LF-num

	50	100	150	200
1	85.42	87.65	87.54	
2	83.23	86.20	87.12	
3	82.91	85.42	86.00	
Average	83.85	86.10	86.68	88.58

Method

Data

Experiments

Conclusion and Future work

Conclusion

- Relatively inexpensive method for predicting coarse semantic categories
- Results of the intrinsic evaluation on French data are similar to the state of the art of minimally-supervised methods applied to other languages
 - ▶ 90.06% for countability and 92.63% for animacy
- Encouraging results on extrinsic evaluations (parsing and MWE detection)

Future Work

- Studying context's influence for ambiguous words
- Supersense tagging
 - Animacy: {Person, Animal, Institution} vs others
 - Countability: {Substance, Food, Felling} vs others
- Lexical semantics representation
 - Supersense embeddings (Flekova&Gurevych 2016)
 - Supersenses scores

	Person	Artifact	Cognition	Event	State	
cuisinière	0.65	0.47	0.03	0.12	0.09	